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Abstract
This paper describes a feature-based image regis-

tration technique that is potentially well-suited for
onboard deployment. The overall goal is to pro-
vide a fast, robust method for dynamically combin-
ing observations from multiple platforms into sen-
sors webs that respond quickly to short-lived events
and provide rich observations of objects that evolve
in space and time. The approach, which has en-
joyed considerable success in mainstream computer
vision applications, uses invariant SIFT descriptors
extracted at image interest points together with the
RANSAC algorithm to robustly estimate transfor-
mation parameters that relate one image to another.
Experimental results for two satellite image registra-
tion tasks are presented: (1) automatic registration
of images from the MODIS instrument on Terra to
the MODIS instrument on Aqua and (2) automatic
stabilization of a multi-day sequence of GOES-West
images collected during the October 2007 Southern
California wildfires.

1 Introduction
The current suite of spaceborne and in-situ assets

(e.g., as deployed and operated by NASA, NOAA,
and other groups) provides distributed sensing of
the Earth’s atmosphere, oceans, and land masses.
As part of a project supported through NASA’s
Earth Science Technology Office (ESTO), we are de-
veloping techniques to enable these assets to be dy-
namically combined into sensor webs. A key prob-
lem, however, is to precisely relate the observations
made by one instrument to the observations made
by another instrument. Since many of the observa-
tions take the form of images, a fast robust method
for achieving automatic image registration is cru-
cial.

The problem of image registration has, of course,
been extensively studied. See [22] for a survey
or [11] for a recent tutorial. Of this vast body of
work, we have tried to focus on techniques that
are better suited for sensor web applications, where

there are often additional constraints such as:

• limited computational cycles and RAM
• need for low latency
• distributed data locations (the data for two im-

ages may reside on different satellites with a
high cost to share data between them)

• robustness to partial occlusion and presence of
non-rigid motions between some regions of the
images due to cloud cover and cloud motion

Given these constraints, we have avoided some tech-
niques that previously have been used successfully
with satellite images such as [19] and [4] as these
require dense correlation calculations.

Instead, we have focused on sparse feature-based
registration, where the key questions are (1) which
features to use and (2) whether to represent the
features with just their locations or to attach ad-
ditional attributes that can aid in matching. As
shown by [18], good features to track or to use
for registration should have strong gradients in (at
least) two distinct directions in a neighborhood of
the feature point. Both corner-like and blob-like
features satisfy this criteria and have been used ex-
tensively, e.g., [12, 7]. Recently, the trend has been
to use more complex features with additional at-
tributes. Mikolajcyzk and Schmid [17] have evalu-
ated a number of these so-called local descriptor ap-
proaches and found that the scale invariant feature
transform (SIFT) descriptors developed by David
Lowe [15] are quite robust.

Thus, the approach we have adopted for image
registration consists of the following steps: (1) ex-
tract SIFT descriptors at interest points located at
scale-space extrema of the difference-of-gaussians
(DOG) operator as in [16], (2) match SIFT de-
scriptors between images to establish tentative cor-
respondences, (3) use RANSAC [6] with the ten-
tative correspondences to estimate the transforma-
tion from one image to another and to identify in-
liers (points that obey the estimated transforma-
tion), (4) estimate the epipolar geometry [8, 13] to



refine the set of inliers, and (5) [optionally] use Thin
Plate Spline (TPS) [5, 2, 20] to estimate a non-
rigid transformation between the images. Similar
approaches have been used successfully by a num-
ber of researchers for a variety of applications in-
cluding: Brown and Lowe [3] for stitching together
photographic panoramas, Fotin [9] for brain image
registration, Lin and colleagues [14] for mosaicking
UAV image sequences, and Yin [21] for satellite im-
age registration.

The remainder of the paper is organized as fol-
lows. Section 2 describes the approach in more de-
tail. Section 3 presents results for registration of
images from two different polar-orbiting satellites,
as well as registration of a sequence of images taken
from a geostationary satellite. Section 4 provides
conclusions.

2 Approach
2.1 SIFT Descriptors

The first step in the approach is to extract SIFT
descriptors at interest points in the two images.
Here, we closely follow the approach of Lowe [16].
Given an image I(x, y), a difference-of-gaussians op-
erator is applied to the image at multiple scales
yielding:

Dσ(x, y)
�
= (Gkσ(x, y) − Gσ(x, y)) ∗ I(x, y)(1)

where Gσ is a circular 2D Gaussian filter with stan-
dard deviation σ. Local extrema of Dσ(x, y) are
identified to subpixel accuracy. Each interest point
is assigned a scale based on σ and an orientation θ
based on the local gradient information around the
point1.

SIFT descriptors are extracted from a neighbor-
hood around each interest point, where the neigh-
borhood is defined by the scale and orientation of
the interest point. The descriptors (128 values for
each interest point) provide a coarse characteriza-
tion of the gradient orientations in the neighbor-
hood.
2.2 Tentative Correspondences

SIFT descriptors from one image are matched
to the SIFT descriptors from another image to es-
tablish tentative correspondences. For the exper-
iments reported in Section 3, we simply computed
Euclidean distance between the 128-dimensional de-
scriptors and reported two descriptors as matching
if they were mutual nearest neighbors and the ra-
tio of the distance from the keypoint to the closet

1If an interest point suggests several possible orientations,
it is duplicated with each copy corresponding to a different
choice of orientation.

neighbor to the distance from the keypoint to the
second-closet neighbor ≤ 0.8. The computational
complexity of this approach is O(N1 ·N2), where Ni

is the number of features in image i. This brute-
force approach can be replaced with more efficient
indexing schemes such as the approximate nearest
neighbor method developed by Beis and Lowe [1].
In addition, if an initial approximate registration
function is available (for example, as recovered from
ephemeris and pointing information), the spatial lo-
cations of the SIFT descriptors can be used to sig-
nificantly prune the number of potential matches
that must be evaluated.

2.3 RANSAC
Given the tentative correspondences, the next

step is to estimate geometrical transformation pa-
rameters from one image to the other. Although
matching SIFT descriptors has significantly re-
duced the number of false matches, there are still
many false correspondences remaining. RANSAC
is widely used in such cases to estimate transfor-
mation parameters in the presence of outliers. The
main idea is to randomly choose minimal sets of cor-
respondences from among the tentative correspon-
dences, use this minimal set to estimate transforma-
tion parameters, and then determine how well the
estimated transformation works for the entire set of
points. Points (or correspondences) for which the
estimated transformation works well are labeled as
inliers. Once the inliers have been determined the
transformation can be re-estimated using all of the
(reliable) available data, which usually improves the
result over the transformation estimated with only
a minimal set. The method can be used for various
transformation classes including translation, affine,
homography, and fundamental matrices. The min-
imal sets for these cases consist of one, three, four,
and seven points respectively, although for the case
of fundamental matrices we use eight-point sets,
which provide more stable estimates in the presence
of noise.

The random selection of a minimal set must be
repeated for a number of trials to insure that at
least one of the randomly selected minimal sets will
consist only of valid correspondences. The number
of trials, ntrials, necessary depends on the size of
the minimal set m, the fraction of tentative corre-
spondences that are truly valid, α, and the desired
probability p (set by the user) that RANSAC will
find at least one outlier-free minimal set.

ntrials ≥ log(1 − p)
log(1 − αm)

(2)



For estimating a homography matrix, which re-
quires a minimal set consisting of four points, we
typically used a few hundred trials in our experi-
ments.

2.4 Estimation of Epipolar Geometry
(Fundamental Matrix)

Epipolar geometry relates two projective views
of a scene. Suppose X is an arbitrary point in 3D
space that is imaged by two cameras with centers
at C and C′, respectively. The line joining C and
C′ is called the baseline. Designate the image of X
on the first image plane to be x and on the second
image plane to be x′. The epipolar geometry tells
that us that the image x′, corresponding to x, must
lie on the epipolar line l′, which is the intersection
of the epipolar plane formed by C, C′, and x and
the second image plane. The epipolar line is related
to x by the, so-called, fundamental matrix F. The
relation is given by:

l′ = Fx (3)

where x is (3 × 1) in homogeneous coordinates and
F is (3 × 3). The epipolar geometry imposes the
constraint that:

0 = x′T Fx (4)

if x′ and x are corresponding points. In practice,
the constraint will not be exactly satisfied due to
noise.

The fundamental matrix F can, in principle, be
estimated from a minimum of 7 correspondences.
However, the seven-point algorithm is extremely
sensitive, so a more robust eight-point algorithm
is used [13]. Here again RANSAC is used to es-
timate the fundamental matrix. Because most out-
liers from the initial set of tentative correspondences
have been eliminated, a high-quality estimate can
be established with a modest number of RANSAC
trials.
2.5 Thin Plate Spline Refinement

Optionally, the image registration can be further
refined using a non-rigid thin plate spline transfor-
mation [20, 2]. This technique has been used exten-
sively in medical and biological image registration
applications. TPS is smooth and consists of a global
affine transformation together with nonlinear terms
that can map a set of K control points to desired
positions subject to a particular smoothness con-
straint. The parameters for a TPS function can be
efficiently computed using the QR matrix factoriza-
tion. The result of using TPS for image registration

on the pair of MODIS-Aqua and MODIS-Terra im-
ages is shown in Figure 5.

3 Experimental Results
In this section, we present experimental results

for two applications:

• automated registration of images taken by the
MODIS instrument on Terra and the MODIS
instrument on Aqua taken 105 minutes apart

• stabilization of a multi-day sequence of images
from GOES-West captured during the October
2007 severe wildfires in Southern California.

3.1 Terra-Aqua Matchups
Figure 1(a) was taken by the MODIS-Terra satel-

lite at 17:50pm and Figure 1(b) was taken by the
MODIS-Aqua satellite at 19:35pm on the same day
(they are cropped from the original images to fo-
cus on the land and make the size reasonable). The
two images are subject to change in viewpoint, ro-
tation, distortion, illumination and slight changes
in scale. Looking at the two images closely, one will
also notice the deformation of clouds, as well as the
appearance and disappearance of some clouds. To
facilitate quantitative evaluation of the results, 48
easily recognizable points were hand-labeled in each
image to serve as ground-truth. These are shown as
numbered points in Figure 1.

Figure 2 shows the DOG interest points extracted
from the MODIS-Aqua image. The dots show the
location and the arrows show the scale and domi-
nant orientation. Approximately 104 interest points
were extracted. A similar result was obtained for
the MODIS-Terra image.

Figure 3 shows the tentative correspondences be-
tween the MODIS-Aqua image and the MODIS-
Terra image as obtained by keypoint matching.
Corresponding keypoints in the two subplots are la-
beled with the same integer index. There are around
277 tentative matches, so only 2.7% of the keypoints
in one image found a match in the other image. Al-
though this may seem to be a bad result (because
such a low fraction of points are matched), the good
news is that about 80% of the matches that are
found are valid. We can see that there are a large
number of tentative matches on the land and moun-
tains and many fewer tentative matches on the lakes
and clouds since these areas lack significant texture.

Once the features are extracted and tentatively
matched based on their SIFT descriptors, RANSAC
is used to estimate an initial geometrical transfor-
mation between the images. Features that obey the
estimated transformation are labeled as inliers. Fig-
ure 4 illustrates the inliers obtained using RANSAC



Figure 1: (a) MODIS-Aqua image. (b) MODIS-Terra image. In addition to the differences due to viewpoint,
there are also significant differences due to the 105 minute time separation, e.g., due to cloud motion. The
numbered points show hand-labeled ground-truth locations of fiducial points used to assess the performance;
these are not used in the actual registration process.

Figure 2: DOG interest points detected on an im-
age from the MODIS-Aqua instrument. The dots
show the location and the arrows show the scale and
dominant orientation. Note that interest points are
generally not found within textureless regions.

Figure 3: Tentative correspondences based on
matching SIFT descriptors. Corresponding points
have the same integer-valued label. (a) Aqua. (b)
Terra.



Figure 4: Inliers after estimation of homogra-
phy transformation and epipolar geometry using
RANSAC. (a) Aqua. (b) Terra. Corresponding
points have the same integer-valued label.

with a homography transformation and refining the
inliers based on the estimated epiplar geometry.

Several tests were performed using different
classes of geometrical transformation including
affine, homography, and TPS. To evaluate the
results, we use the ground truth (hand-labeled)
fiducial points. The ground-truth points on the
MODIS-Terra image are mapped to the MODIS-
Aqua image through the estimated transformation.
Because RANSAC selects slightly different sets of
inliers each time, each experiment was repeated 30
times and the results averaged to measure the per-
formance (we also report the standard deviations to
give a feel for the variability). The average distance
between the mapped points and the ground truth
locations on the MODIS-Aqua image are:

• affine: 5.2 pixels with standard deviation 0.41
pixels

• homography: 5.4 pixels with a standard de-
viation of 0.68 pixels

• affine plus TPS: 2.6 pixels, with a standard
deviation of 0.30 pixels

• homography plus TPS: 2.7 pixels, with a
standard deviation of 0.38 pixels.

The performance of the affine registration is slightly
better than that of homography; however, TPS is
the best overall, based on both the quantitative ex-
periments and visual comparisons. The registration
result via TPS is shown in Figure 5. One can see
that the land is registered well, and the motion of
clouds can easily be observed.

Figure 5: Registration of the MODIS-Terra image
onto the MODIS-Aqua image. The red shows the
MODIS-Aqua, the cyan shows the warped MODIS-
Terra, and the gray-scale shows where they overlap.

3.2 GOES Sequence Stabilization
A second application of our technique involves

automatically aligning a sequence of GOES West
images taken from geostationary orbit during the
October 2007 Southern California wildfires. The
sequence consists of 124 daytime images covering
4 days. Although GOES is geostationary, there is
significant jitter in the raw image sequence due to
satellite drift and other errors. To understand the
amount of jitter, thirty fiducial points were hand-
labeled in each frame2. Figure 6 shows the fiducial
points on one frame of the sequence. Let the coor-
dinates of the k-th fiducial point in the f -th frame
be:

p(f)
k =

(
x

(f)
k , y

(f)
k

)
(5)

Figure 7 illustrates the amount of jitter in the raw
sequence. This plot shows how each of the fiducial
points would line up if the frames of the raw se-
quence were simply superimposed on top of each
other, i.e., each subplot corresponds to a particular
value of k and plots p(f)

k for each value of f . One
can see that all the dots for a given fiducial point
fall within a roughly ±4 pixel window.

To reduce the jitter, we applied the procedure
described in Section 2 to automatically register all
frames to a designated base frame (which happens

2In some frames a few of the fiducial points are not visible
due to cloud cover and, in some cases, smoke. These obscured
points are omitted from the quantitative analysis.



Figure 6: The designated base frame in the GOES
sequence. The hand-labeled fiducial points are also
shown.

to be the frame shown in Figure 6). Note that the
hand-labeled fiducial points are not used in the reg-
istration; they are only used to quantitatively mea-
sure the quality of the final registration. As in the
previous experiment, we considered several classes
of geometric transformations including translation,
affine, homography, and TPS.

Once all instances of fiducial point k are mapped
to the base frame via the chosen transformation
method, error ellipses based on the covariance ma-
trix (95% confidence region) are used to quantify
the performance. Let the coordinates of point k
after mapping from frame f to the base frame be
designated as:

p̃(f)
k =

(
x̃

(f)
k , ỹ

(f)
k

)
(6)

Ideally, the mapped versions of point k from all
frames would fall precisely on the ground truth lo-
cation of point k in the base frame. In general, how-
ever, this will not happen. The error can be broken
up into two components: (1) bias: the difference be-
tween the mean location of the mapped versions of
point k and the ground truth location and (2) vari-
ance: the spread of the mapped versions of point
k relative to the mean location. If desired, the bias
(squared) and variance can be combined to measure
the mean squared distance of the mapped versions
of point k from the ground truth location. In our
experiments, we report the area of the 95% confi-
dence ellipse rather than the variance, as the area
is somewhat easier to interpret.

Figures 8(a)–(d) show the results based on trans-
lation, affine, homography, and TPS, respectively.

Figure 7: Error ellipses showing the jitter in the raw
GOES sequence. The red crosses are the dots for a
given fiducial point mapped to the base frame with-
out any transformation. The yellow asterisk shows
the point in the base frame. The green ellipses shows
the 95% confidence regions based on the covariance
matrix.

The scales for each subplot are the same so that
they can be compared directly. In this case, the
simplest transformation, translation, gives the best
result. This conclusion is also supported quantita-
tively by Table 1. Each row in the table corresponds
to registration using a different class of transforma-
tions. The “identity” transformation on the first
row is the same as not doing registration (accepting
the raw sequence as registered). The three columns
marked bias measure the displacement between the
mean location of fiducial point k after registration
and the location of the same fiducial point in the
base frame. The three columns marked area mea-
sure the area of the 95% confidence ellipse. For both
the bias and area columns, the labels min, med, and
max refer to the minimum, median, and maximum
values over the 30 points. The translation and affine
transformations provide similar results, with trans-
lation providing slightly smaller error ellipses. All
methods significantly reduce the jitter compared to
the raw sequence.

4 Conclusion

The current suite of spaceborne and in-situ sen-
sors provides distributed observations of the Earth’s
atmosphere, oceans, and land surface. Onboard
image registration techniques will allow these as-
sets to work together as sensor webs enabling ap-



bias area
Transformation min med max min med max
identity 0.2134 1.0374 1.5505 30.9797 38.3572 47.9587
translation 0.0681 0.5409 1.0668 2.6131 7.2531 25.7685
affine 0.0606 0.5315 1.0837 2.6466 7.6042 26.7026
homography 0.1139 0.5144 1.0551 3.1711 9.9174 28.0463
TPS 0.0569 0.5722 0.9766 3.4868 13.7394 38.0297

Table 1: Summary of registration accuracy for 30 fiducial points in the GOES-West image sequence. Bias
measures the displacement between the mean location of fiducial point k after registration and the location
of fiducial point k in the reference frame. Area measures the area of the 95% elliptical confidence region.

Figure 8: (a) Translation. (b) Affine. (c) Homography, (d) TPS. Each subplot corresponds to a different
fiducial point k. The red crosses show p̃, the fiducial points from all frames mapped to the base frame base.
The yellow asterisk shows the ground truth position of the fiducial point in the base frame. The green ellipse
shows the 95% confidence region on the covariance matrix.



plications such as change detection, feature track-
ing, and autonomous response to scientifically in-
teresting events. We have presented a potentially
viable approach using invariant SIFT descriptors
extracted from DOG interest points and RANSAC
to perform automatic registration. The method can
support various classes of geometric transformations
including, translation, affine, homography, epipolar,
and TPS. This method does not require geoloca-
tions (longitudes and latitudes) of individual pixels
or approximate initial registration (although such
information can be exploited to speed up the fea-
ture matching process).
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